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| ' ABSTRACT

Hueckel's edge detector finds the best-fitting ideal
step edge to a given picture neighborhood, by expanding
the neighborhood and step edge in terms of a set of
nine basis functions. The simplest case of this ap-
proach uses a 2-by-2 neighborhood and three basis func-
tions. This case is solved explicitly using elementary

| methods. The magnitude of the best-fitting step edge
‘ for the neighborhood
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turns out to be the Roberts operator max (|A-D|,|B-C|).
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1. Introduction

Hueckel [1-2] developed an approach to edge detection based
on fitting an ideal step edge to a given picture neighborhood.
L The fitting was done by expanding both the step edge and the

neighborhood in terms of a set of orthogonal basis functions,

and minimizing the sum of the squared differences between
corresponding coefficients. To simplify the computation, the {

expansion is truncated; Hueckel used a nine-term expansion.

Several simplifications of Hueckel's approach have also

{ |

i‘ been investigated. Nevatia [3] used a subset of Hueckel's

| basis; O'Gorman [4] used a set of two-dimensional Walsh func-

tions defined on a square; Merd and Vassy [5] used only two

basis functions, defined by diagonally subdividing a square,

to determine edge orientation; and Hummel [6] used a set of ;

optimal basis functions derived from the Karhunen-Loéve expan-

sion of the local image values. §

; In this correspondence we present an elementary treat- i

ment of edge fitting in the simplest possible nontrivial case.

AB
CD

s(x,y) passing through the center of this neighborhood (which

T We use a 2-by-2 picture neighborhood » and a step function

} we take to be the origin), defined by

) a if x sin 6 > y cos 8 z
. s(x,y) = |
b otherwise

We use only three basis functions, namely




r 1 =1 =1 1-1
: N | 3N 1l -1

It turns out that the magnitude of the best-fitting step

L edge derived in this way is just max (|A-D|,|B-C|), the Roberts i

" operator [7]. Thus this correspondence has two purposes: to
illustrate how Hueckel-type edge detectors can be derived using
elementary methods, and to provide a new motivation for the max '

version of the Roberts operator.
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2. Derivation )

A B
cCD

these basis functions be fo'fl' and fz, respectively; then

Let the coefficients of f(x,y) with respect to

readily we have

f0 = (A+B+C+D)/4 = S/4
fl = (-A-B+C+D)/4 (1)
f2 = (A-B+C-~D)/4 J

Similarly, let the coefficients of s(x,y) be SgrSyr and

s,; then readily

2'
89 = (a+b) /2
0 n-6 26=-n :
S, = 37 (b-a) + =ges {a=b) = T (b-a) if 0 = 6 =< n
-
= 55 (a-b) + 322 (b-a) = 3728 (poa) if nos 6 s 2 | |
(2) |
: e+; %-6 e n n ; j
s, = — (b-a) + = (a-b) = = (b-a) if - x < 6 < !
2 2n 2n . 2z z
||
Gase 3" o |
2 - }
= 52 (a-b) + S (b-a) = =2 (b-a) £ F <o =3 o
||
We now want to minimize Ez s (f.-s )2 + (f£.,-s )2 + (£,-s )2- |
0 "0 + Bl | - g ol
‘because of the way s and s, are defined, this must be done
separately for © in each quadrant. Actually, since a and b
are interchangeable, by symmetry it suffices to treat the first 1
and second quadrants. 1In fact, in (2 ), if we replace 6 by
é+n and interchange a and b in 2%%%2 (b-a), we obtain 2%51 (b-a);

and similarly E%Q (b~a) yields % (b-a).




In the first quadrant we have

2 S a+b, 2 -A-B+C+D 20-1n 2
E = (z - _..2_.) + ( 7 - T (b-a))
(3)
A-B+C-D ] 2

Taking partial derivatives of ( 3) with respect to a and b

and setting them equal to zero, we obtain

a+b 26-m -A-B+C+D _ 26-n

l. s
-'z-[z- 2 ]+ 21 [ 4 21 (b-a)]
» Q[ABICD _ 8 ) . g
(4)
.S a+b 20=1 . ~A-B+C+D 20=n
o 5 [T = =2 ]- 2n [ 4 Ao 21 (b-a)]

. [522;922 - % (b-a)] = 0

=2

Adding gives immediately S/4 = (a+b)/2, or a+b = S/2, as in
the previous solution. Taking the partial derivative of (3)

with respect to 6 and equating it to zero gives

[ TA=B+C+D _ ZO;w (b-a)] + (A=B+C=D _ & (b-a)1 =0 (5

4 4
or
so that (4¢-n) (b-a)/n = C - B (6)

Also, substituting S/4 = (a+b)/2 and (5) in either equation

of (4) gives

TR o o




=A=B+C+D _ 26-n ,, _
4 2n (b-a) = 0

(7)

so that we also have
A-B+C-
EEER - 2 b-a) = 0 (8)
If 6 is not 0 or n/2, and b # a, we can divide (7 ) by
(8) (orrvice versa) to obtain

A=B¥C-D _ &

~A-B+C+D _ m (9)
i

from which we readily have
8(2a-2D) = 3 (A-B+C-D)

or (if A # D)

_ T . A-B+C-D _1m , _ B-C
o =7 T (U= ==%1 (10)

Combining this with (8 ) gives b-a = A-D, and combining this

with b+a = S/2 gives

a = (-A+B+C+3D)/4 = S/4 - (aA-D)/2
(11)

b = (3A+B+C-D)/4 = S/4 + (A-D)/2

Note that by (7 ), (8), and the fact that a+b = S/2, we actually

2

have E” = 0 for this solution. It is easily verified that if

we assume 6 = 0 or 6 = % in (3), and set the partial deriva-

tives with respect to a and b equal to zero, we obtain




special cases of this solution. 1In fact, for 6 = 0, we find
that A+C = B+D, b = (A+B)/2, and a = (C+D)/2; while for 6 = %
we get A+B = C+D, b = (A+C)/2, and A = (B+D)/2.

In the second quadrant, analogously, we get

a = (A+3B-C+D)/4 = S/4 - (C-B)/2
(12)
b = (A-B+3C+D)/4 = S/4 + (C-B)/2
and
T A-D
9-2‘[3+B—_E-] (13)

It can be verified that the first and second quadrant solutions
agree if 6 = n/2. Moreover, note that for (10) to actually lie

in the first quadrant we must have

B~

(@]

-1 = <1

>
O

which is evidently equivalent to |B-C| = |A-D|. Similarly,
for (13) to actually lie in the second quadrant we must

have

- A-D

s 3¢ 1

-1

IA

which is evidently equivalent to |A-D| < |B~C|. Thus by compar-
ing the magnitudes and signs of A-D and B-C we can choose

the appropriate best-fitting step edge for the given neighbor-

AB
CcD*

@ =nmnin (13); moreover, in this case (l1l) and (12) also agree,

hood Note that if A~D = B-C we have 6 = 0 in (10) and

with a and b interchanged. Similarly, if A-D = C-B, we
have 6 = % in both (10) and (13), and here (11) and (12) agree

too.




AB

In summary, the "best-fitting" step edge to cD

is found

as follows:

I1f |B-C| = |A-D|, then ¢ = % (1~ g;%], and a,b are
given by (11)

£ o % . e A-D

1f |B-C| = |A-D|, then § = 73+ 3%l and a,b are

given by (12)

The magnitude |a=b| of the edge is |A~-D| in the first case,

and |B-C| in the second case; in other words, the magnitude

is max (|A-D|,|B-C|). Note that this is just the magnitude of
the Roberts operator, using the max of the absolute differences
rather than the square root of the sum of the squares [7].

(The slope 6, on the other hand, is not the arc tangent of the

ratio of these differences; but its value is reasonable, e.g.,

g AB - 12 o
if cD - 34 we get 6 = E‘)

o L,




3. Conclusion

We have presented an elementary derivation of step edge
fitting in the simplest nontrivial case: a 2-by-2 neighbor-
hood and three basis functions. It turns out that the magni-

" tude of the best-fitting edge to is max (|A-D|,|B-C|),

AB
CD
which is a commonly used version of the Roberts edge detector;

thus our derivation provides a new motivation for that detector.
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